Muon Collider & Neutrino Factory Studies

R B Palmer ATF Users 10/18/05

Design Studies

- Muon Collider
 Much smaller than Linear Collider
 Hard Problem Only conceptual studies done
- Neutrino Factories Similar technologies Only way to study leptonic CP violation if $\sin^2(2\theta_{13}) < 0.01$ Detailed Studies including cost and performance

Technology R&D

- Hg Target Experiments
- Cooling Components and MICE Experiment
- 200 MHz SC RF, and FFAG Studies

Collaborators

- US Collaboration > 100 members BNL, Cornell, Fermi, LBNL, US Universities (including MSU)
 - -2 Spokespersons: S. Geer, Bob Palmer
 - Project manager: Mike Zisman
 - -MCOG Steve Holmes Jim Siegrist, Tom Kirk
 - MUTAC Helen Edwards chair
- European Groups CERN, RAL (UK), INFN (Italy), Universities
- Japanese Groups KEK, Osaka, other Universities
- Russia
 BINP (including Skrinski, who started all this)

NEUTRINO FACTORY

- Uses similar technologies as Collider, but
- Simpler than Collider

- Lower Backgrounds than Conventional Beams
- Only way to study CP Violation if θ_{13} small

Errors in CP angle δ

US Studies

- Feasibility Study 1 (2000)
- Feasibility Study 2 (2002)
- Study 2a for APS (2004)

Great progress on performance and Cost

- Current efforts: A one year International Scoping Study
- Hoping to converge on one scheme

Schematic of Neutrino Factory Study IIa

- Very similar to front end of Collider (but easier)
- Technologies for Factory also apply to Collider

TECHNOLOGIES for Factory or Collider

1) Target and Capture

- Liquid mercury Jet 'destroyed' on every pulse
- 20 T Solenoid captures all low momentum pions
- Field subsequently tapers down to approx 2 T
- Target tilted to maximize extraction of pions

BNL Target Experiment E951

- Single pulse 4 Tp
 But density equiv to 1 MW
- Non-Explosive Dispersion good
- But 4 MW Nu-Factory requires:
 32 Tp/bunch

Approved CERN Experiment MERIT

- More intensity 32 Tp as required for 4 MW
- 15 T pulsed Magnet near completion

2) Phase Rotation (Reduce dp/p prior to Cooling)

Neuffer's Bunched Beam Rotation with 200 MHz RF

dE

• RF frequency must vary along bunching channel Because High mom. bunches move faster than lower

Simulation of Phase Rotation

3) Ionization Cooling

Electron, synchrotron, and stochastic cooling all too slow

- Cooling competes with Coulomb Scattering
- Best with Hydrogen
- and Strong Focus

Cooling Performance in Study IIa

R&D on Ionization Cooling Components MUCOOL Collab Lead by Fermilab (A. Bross)

- Design, Build, Absorbers
- Design, Build, and Test Absorber Windows
- High Gradient RF Studies at 805 MHz (Lab G FNAL)
- Design & Start Const. of 201 MHz Cavities
- Experiment with High Pressure Hydrogen STTR
- Test area at FNAL

MUON IONIZATION COOLING EXPERIMENT (MICE)

- Solid Design based on Study-2 channel (Similar components to RFOFO cooling ring)
- International Collaboration: (US, Europe, Japan)
- Approved at RAL and funded for Phase I

4) Acceleration

- Must be fast: Muon lifetime=2 micro sec
- Use initial SC Linac
- Then Recirculating Linear Collider (RLA)
- Followed by FFAG's

a) Scaling FFAG MURA & KEK (Japan)

- Eliminates multiple arcs of RLA
- ullet Allows more turns ightarrow less RF
- Δp limited only by aperture but only 1:2 for Japan 20 GeV
- Tune independent of momentum i.e. Chromaticity=0

BUT

- Large magnet apertures
- Non-isochronous
 - \rightarrow Low Frequency RF
 - \rightarrow Non-superconducting RF

b) Non-Scaling FFAG (Proposed by Carol Johnstone)

Combined function strongly focusing lattices without sextupoles e.g. from Dejan Trbojevic

- Orbits are not similar
- They are closer together than in scaling
 - \rightarrow smaller apertures
 - \rightarrow more isochronous

Why a Muon Collider

- Muons are point like, similar to electrons
- Can probe the same physics, and some more
- But have 40,000 less radiation
- So Muon Colliders can be much smaller than Linear Colliders

Schematic of Muon Collider (not to scale)

Injection in both directions in all rings (not shown)

3 TeV Muon Collider (drawn to scale)

Snowmass 98 Assumed

Average bending field	${f T}$	5.2
Tune Shift (from e rings)		0.044
Luminosity	$10^{33} cm^{-2}$	70

	\mathbf{E}_{cm}	$oldsymbol{\mathrm{N}}_{\mu}$	f	${f P}_{\mu}$	$\beta_{\perp} = \sigma_z$	dp/p	\mathbf{emit}_{\perp}	$\mathbf{emit}_{\parallel}$
	${ m TeV}$	10^{12}	Hz	MW	$\mathbf{m}\mathbf{m}$	%	π mm	π mm
Required	3	2	30	28	3	0.16	.05	72
Initial							20	2000
Factor							400	30

Required Cooling 6 D by 1/6,000,000

And Cooling must include Longitudinal: i.e. dp/p

Longitudinal Cooling: Emittance Exchange

- dp/p (and Longitudinal emittance) reduced
- But σ_y (and transverse emittance) increased
- Transverse cooling from mean loss in absorber \rightarrow "Emittance Exchange"
- J's are modified, but Jx + Jy + Jz = constant

"Emittance Exchange" + Transverse Cooling = 6 D cooling

e.g. 6 D cooling in "RFOFO" Ring with Wedges

- Bending gives dispersion
- Wedge absorbers give cooling also in longitudinal
- Many turns in ring gives more cooling at lower cost
- But Injection/extraction Hard

Injection/Extraction Vertical Kicker

Alternating 3T Solenoids Tilted for Bending B_y

201 MHz rf 12 MV/m

Hydrogen Absorbers

- Could be converted to Helix
- Avoids injection/extraction
- Better performance by tapering
- But more expensive

Performance of RFOFO Ring

- Final Long Emittance 2400 (pi mm mrad)
- Less that (7200 pi mm mrad) Required for Collider

Final cooling to very low emittance

Lithium Lens

• For uniform i then perfect lens

$$I \propto r^2$$

Bending
$$\propto B \propto I/r \propto r$$

- Maximum current limited by breaking containment tube
- ullet Pressure \propto Surface Field Current lenses 10 T

Plausible Solution to Collider Requirements

Heavy lines indicate completed simulations

Alternative to Li Lenses for final cooling One Cell of HTS 20T Cooling Lattice

- Magnets are small
- RF is in low field
- Not yet simulated

Conclusion

• Neutrino Factory

- -If $\theta_{13} < 10^{-2}$ Factory is only hope to see CP
- -If $\theta_{13} > 10^{-2}$ Factory perhaps not needed
- Will not know for 5-10 years
- -International Scoping Study (ISS) ongoing

• Muon Collider

- -Interesting for physics & Smaller than Linear Collider
- Difficult technically
- Neutrino Radiation limits Maximum Energy
- -New progress on design

• Sound R&D Program in Progress

- -Hg Jet Target for 4 MW (CERN Exp)
- Cooling Components (MUCOOL)
- -SC RF at 200 MHz (Cornell)
- Cooling Experiment (MICE)
- Interesting Spin-Offs: Hg Target, Non-Scaling FFAG's